Energy-Aware Routing for Software-Defined Multihop Wireless Sensor Networks

Image credit: IEEE


In this paper, we propose an energy-aware routing algorithm and a control overhead reduction technique for prolonging the network lifetime of software-defined multihop wireless sensor networks (SDWSNs). This is an effort to optimize the energy consumption of WSNs that provide services to the Industrial Internet of Things (IIoT). A centralized controller grants a global view of the sensor network by introducing extra control overhead in the network, but this leads to extra energy costs. However, our new algorithm takes advantage of this global view and balances the network energy by selecting paths with the highest remaining energy level among multiple paths for each sensor node. We also identify key functions draining energy from the SDWSN and minimize their impact by implementing a data packet aggregation function, and minimizing the control overhead by keeping track of the sensor nodes' routing tables using a simple checksum function. We show that the proposed approach prolongs the network lifetime of the WSN by 6.5% on average compared to the standard shortest-path algorithm, and that the control overhead is reduced by approximately 12% while still maintaining a very high packet delivery ratio.

In IEEE Sensors Journal

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

F. Fernando Jurado-Lasso
F. Fernando Jurado-Lasso
Postdoctoral Researcher

My research interests iclude networked embedded systems, software-defined wireless sensor networks, machine learning, protocols and applications for the Internet of Things.